Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, LBP and SVM

نویسندگان

  • Wener Borges de Sampaio
  • Aristófanes Corrêa Silva
  • Anselmo Cardoso de Paiva
  • Marcelo Gattass
چکیده

Breast cancer is the second commonest type of cancer in the world, and the commonest among women, corresponding to 22% of the new cases every year. This work presents a new computational methodology, which helps the specialists in the detection of breast masses based on the breast density. The proposed methodology is divided into stages with the objective of overcoming several difficulties associated with the detection of masses. In many of these stages, we brought contributions to the areas. The first stage is intended to detect the type of density of the breast, which can be either dense or non-dense.We proposed an adaptive algorithm capable of analyzing and image and telling if it is dense or non-dense. The first stage consists in the segmentation of the regions that look like masses. We propose a novel use of the micro-genetic algorithm to create a texture proximity mask and select the regions suspect of containing lesions. The next stage is the reduction of false positives, which were generated in the previous stage. To this end, we proposed two new approaches. The first reduction of false positives used DBSCAN and a proximity ranking of the textures extracted from the ROIs. In the second reduction of false positives, the resulting regions have their textures analyzed by the combination of Phylogenetic Trees, Local Binary Patterns and Support Vector Machines (SVM). A micro-genetic algorithm was used to choose the suspect regions that generate the best training models and maximize the classification of masses and non-masses used in the SVM. The best result produced a sensitivity of 92.99%, a rate of 0.15 false positives per image and an area under the FROC curve of 0.96 in the analysis of the non-dense breasts; and a sensitivity of 83.70%, a rate of 0.19 false positives per image and an area under the FROC curve of 0.85, in the analysis of the dense breasts. © 2015 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Contrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters

Introduction Breast cancer is one of the most common types of cancer among women.  Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...

متن کامل

Classification of Local Binary Patterns in Mammogram Using SVM

Mammogram is one of the most commonly used radiology tool for the detection of breast cancer at the earlier stage, as it helps to reveal abnormalities such as masses, micro-calcification, asymmetries and architectural distortions. In this paper, we propose a technique for diagnosing breast cancer by using SVM classifier, which segregates on the basis of LBP features. SVM (Support Vector Machine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015